Интернет-журнал ТелеФото Техника           Главная    |    E-mail    |    25.04.2024      
Главная страница   |   О журнале   |   Авторам   |   Редколлегия   |   Контакты            

Научно-технический интернет-журнал        Свидетельство о регистрации Эл № ФС 77-31314      


   


 

Новости отрасли
На главную / Все новости / Все новости раздела

Дата   :   18 ноября 2010 года  |  просмотров: 235

В связи с голограммами наметились некие подвижки

Американцы утверждают, что осуществили прямую трансляцию подвижных голографических изображений, то есть широко шагнули в то самое будущее, где трёхмерная проекция человека на равных общается с живыми людьми. Учёные говорят, что успех им принесла технология, принципиально отличная от известных 3D-дисплеев, и деловито рассуждают о перспективах её применения. Всё это, впрочем, не мешает достигнутым результатам выглядеть более чем скромно.
Голографическое телеприсутствие (holographic telepresence) – это голография с постоянной и быстрой перезаписью изображения в реальном времени. Прогресса в развитии этой технологии добились профессор Нассер Пейгамбарян (Nasser Peyghambarian) и его коллеги из университета Аризоны. Учёные действовали в кооперации со специалистами из Nitto Denko Technical (калифорнийского подразделения японской корпорации Nitto Denko).




Новая система, по уверению её авторов, способна на частоту обновления изображения в один кадр за две секунды. Правда, в представленных роликах зрителям предложено рассматривать с разных точек зрения статичные кадры.





Нынешние объёмные дисплеи – не важно, автостереоскопические или требующие специальные очки – выдают вполне реалистичное 3D-изображение заранее отснятых предметов, будь то трёхмерные фильмы, графика из игр и так далее.

Но при этом зритель, сместившись относительно центра экрана правее или левее хоть на 60-80 градусов, всё равно не сможет увидеть ухо смотрящего точно на него персонажа – просто потому, что с этой стороны объект не был записан.
Иное дело голограммы. Специальные пластинки, сохраняющие интерференционную картину, при правильном освещении воспроизводят верный поток лучей "от предмета" – с какой стороны на такой снимок ни посмотри. Так создаётся иллюзия трёхмерной копии вещицы в фотографической рамке.





До голографического дисплея отсюда один логичный шаг: нужно сделать так, чтобы голограмму на пластине можно было быстро стирать и перезаписывать в реальном времени, да ещё по сигналу, передаваемому извне. Такой переход, однако, оказался технически не менее сложным Для постоянной перезаписи нужны были материалы, быстро перестраивающие свою структуру в ответ на воздействие лазера. Подобрать их оказалось непросто. К примеру, в Массачусетском технологическом институте (MIT) систему с подвижными голограммами построили ещё в 1989 году.

Увы, изображение в ней занимало объём всего 25 кубических миллиметров. Это было бесконечно далеко от практического применения, а попытки нарастить размер дисплея пресекались ухудшением качества картинки и ростом сложности оптики, что ввергло сторонников голографических видеосистем в отчаяние.
Основание для оптимизма появилось в 2007 году, когда Nitto Denko Technical при участии Нассера и ряда его коллег создала полимер (смотрите статью в Nature), способный играть роль голографической фотопластинки многократного действия.

Размер чувствительного материала достигал 10 х 10 сантиметров. При этом максимальный темп перезаписи изображения на такой пластине составлял один кадр за три-четыре минуты.

Ныне та технология существенно усовершенствована. Со слов одного из её авторов Пьера-Александра Бланша (Pierre-Alexandre Blanche), экран из нового фоторефрактивного материала способен обновлять голограмму каждые две секунды, что "делает его первым, который можно описать как систему с отображением в квазиреальном времени".

Начинается всё с 16 камер, полукругом стоящих вокруг объекта. Они снимают его с разных сторон. Компьютер проводит обработку данных и передаёт информацию, необходимую для создания голограммы, через цифровой канал в другую комнату (город, страну).

Там в дело вступает кодирующий импульсный лазер, вспыхивающий с частотой 50 герц при длине одного импульса в наносекунду. Его свет складывается с волнами от опорного лазера, а интерференционная картина запечатлевается на поверхности дисплея. При этом каждая вспышка лазера записывает один хогель, или гогель (hogel — сокращение от holographic pixel, голографический пиксель).

Происходит запись так. Полимерный композит сложного состава в новом экране зажат между двух прозрачных электродов. Когда свет от лазеров попадает на молекулы сенсибилизатора в составе композита, они создают разделение зарядов.
Полимер, подобранный учёными, намного лучше проводит положительные заряды, чем отрицательные, так что первые уходят прочь от места возникновения.

В свою очередь разделение зарядов создаёт электрическое поле, которое меняет ориентацию красного, зелёного и синего пигментов в составе композита. Теперь, когда хогель освещается внешним светом от светодиодов, он создаёт нужную точку в общей голограмме. А через пару секунд новая вспышка наносекундного лазера меняет хогель в соответствии со следующим кадром видео.




В качестве теста системы её авторы устроили видеоконференцию, в ходе которой голографическое изображение сотрудника Nitto Denko передавалось из Калифорнии в Аризону.

Поперечник экрана в нынешней установке составляет 10 дюймов (25,4 см), но авторы технологии уже тестируют большие пластины (вплоть до 17 дюймов). Скорость обновления изображения тоже может быть увеличена: для этого нужно модифицировать красители в полимере, чтобы они меняли своё состояние быстрее, а также перейти к лазерам, выдающим более короткие импульсы с большей частотой.





Системы трёхмерной видеосвязи, игры и реклама — далеко не все направления, в которых пригодятся подвижные голограммы. К примеру, они очень понравятся медикам. Вокруг голографического пациента, лежащего на столе-дисплее, можно будет собирать консилиумы, в которых будут перемешаны участники, присутствующие живьём и находящиеся в других городах, хирурги смогут принимать дистанционное участие в операциях.

Ещё благодаря голограммам инженеры получат возможность с безопасного расстояния следить за ходом процессов на опасных производствах… Таковы перспективы новой системы, если учёным удастся нарастить размер, разрешение изображения и частоту кадров.

www.membrana.ru/articles/telecom/2010/11/08/185400.html